


$3 \mathcal{D}$ printing technology aims students understanding maths and recycling procedure

O2_3rd Curricula of Maths: Stereometry
3D shapes_Surface Area and Volume

## Outline

- 3D Shapes: Surface Area and Volume
- Videos

| Edges | 'Vertices | Faces |
| :---: | :---: | :---: |
| 12 | 8 | 6 |

Cube
Square


## 4

Surface Area=6* $\left.\alpha^{*} \alpha\right)=6^{*} \alpha^{2}$

Up and down 2 squares Area of 1 square $=4 * 4=16$ Area of 2 squares $=2 * 16=32$

Front and back 2 squares
Area of 1 square $=4 * 4=16$
Area of 2 squares $=2 * 16=32$
Right and left 2 squares
Area of 1 square $=4 * 4=16$
Area of 2 square $=2 * 16=32$
Surface Area $=32+32+32=96$
Volume $=4 * 4 * 4=64$

Cuboid-Rectangular Prism
Orthogonal
Cuboid


Surface Area $=2^{*}\left(\alpha^{*} \beta\right)+2^{*}\left(h^{*} \alpha\right)+2^{*}\left(\beta^{*} h\right)$


Up and down 2 rectangelsatsio Area of 1 rectangular $=4 * 12=48$ Area of 2 rectangular $=2 * 48=96$ Front and back 2 rectangulars Area of 1 rectangular $=12 * 8=96$ Area of 2 rectangulals $=2 * 96=192$

Right and left 2 rectangulars
Area of 1 rectangular $=4 * 8=32$
Area of 2 rectangular $=2 * 32=64$
Surface Area =48+192+64=352
Volume=4*8*12=384

## Volume $=\left(\alpha^{*} \beta\right)^{*} h$



## Trianngular prism

C
h


Surface Area
=Area of all over $+2^{*}$ Area of triangular $=$ Perimeter of triangular*h+2*1/2(a*b)

Surface Area=
Area of all over $+2^{*}$ Area of triangular $=(3+4+5) * 10+2 * 1 / 2(3 * 4)$
$=132$
Volume=
Area of triangular* $\mathrm{h}=\frac{1}{2} * \mathrm{a} * \mathrm{~b} * \mathrm{~h}$
Volume $=\frac{1}{2} * 3 * 4 * 10=60$


## Cylinder



Surface Area =

## =Perimeter of cycle*h+2*Area of cycle

$$
\begin{aligned}
& =2 \pi r^{*} \mathbf{h}+\mathbf{2}^{*} \boldsymbol{\pi \mathbf { r } ^ { 2 }} \\
& \text { Surface }=2 \pi 4^{*} 10+2^{*} \pi 4^{2} \\
& =80 \pi+32 \pi=112 \pi
\end{aligned}
$$

Volume=Area of cycle*h $=\pi r^{2}$ *h

Volume $=\pi 4^{2 *} h$
$=16 \pi * 10=160 \pi$

| Edges | 'Vertices | Faces |
| :---: | :---: | :---: |
| 2 | 0 | 3 |

## Square base Pyramid

Surface Area =
=Perimeter of triangular + area of square

$$
=\frac{1}{2} * 4^{*} a^{*} u+a^{2}
$$

$$
\begin{aligned}
& \text { Surface Area }= \\
& =\frac{1}{2} * 4 * 5 * 7+5^{2} \\
& =70+25=95
\end{aligned}
$$



$$
\begin{aligned}
\text { Volume } & =\frac{1}{3} * \text { area of square } * \mathbf{h} \\
& = \\
\text { Volume } & =\frac{1}{3} * 25 * 10=83,3
\end{aligned}
$$

## Types of Pyramid




Base: polyedron


Base: triangufar


## Cone

Surface Area =

$$
\begin{aligned}
& =\text { Perimeter of cycle*h+Area of cycle } \\
& =\pi r \lambda+\pi r^{2}
\end{aligned}
$$

Surface $=\pi * 5^{*} 13+\pi * 5^{2}$
$=65 \pi+25 \pi=90 \pi$

Volume $=\frac{1}{3} \pi r^{2} * h$
Volume $=\frac{1}{3} * \pi^{*} 5^{2} * 12=100 \pi$


| Edges | `Vertices | Faces |
| :---: | :---: | :---: |
| 1 | 1 | 2 |

Erasmus+
IKY

## Sphere

## Surface Area $=4 \pi r^{2}$

$$
\text { Surface }=4 * \pi^{*} 5^{2}=100 \pi
$$

Volume $=\frac{4}{3} * \pi * r^{3}$
Volume $=\frac{4}{3} \pi * 5^{3}=166,6 \pi$

| Edges | `Vertices | Faces |
| :---: | :---: | :---: |
| 0 | 0 | 1 |



- https://www.youtube.com/watch?v=CYVmmTaqIPU
- https://www.youtube.com/watch?v=3-QwWFkz5hw
- https://www.youtube.com/watch? $\mathrm{v}=$ = XJ1A5io8vc
- https://www.youtube.com/watch?v=LEuFeXsqXXA
- https://www.youtube.com/watch?v=ZJ-VMcbLTaU


Erasmus+ $\mathbb{K} Y$

